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A real coded genetic algorithm is implemented for the optimization of actuator
parameters for cylinder drag minimization. We consider two types of idealized actu-
ators that are allowed either to move steadily and tangentially to the cylinder surface
(“belts™) or to steadily blow/suck with a zero net mass constraint. The genetic algo-
rithm we implement has the property of identifying minima basins, rather than single
optimum points. The knowledge of the shape of the minimum basin enables further
insights into the system properties and provides a sensitivity analysis in a fully auto-
mated way. The drag minimization problem is formulated as an optimal regulation
problem. By means of the clustering property of the present genetic algorithm, a set of
solutions producing drag reduction of up to 50% is identified. A comparison between
the two types of actuators, based on the clustering property of the algorithm, indi-
cates that blowing/suction actuation parameters are associated with larger tolerances
when compared to optimal parameters for the belt actuators. The possibility of using
a few strategically placed actuators to obtain a significant drag reduction is explored
using the clustering diagnostics of this method. The optimal belt-actuator parameters
obtained by optimizing the two-dimensional case is employed in three-dimensional
simulations, by extending the actuators across the span of the cylinder surface. The
three-dimensional controlled flow exhibits a strong two-dimensional character near
the cylinder surface, resulting in significant drag reductio, 2002 Eisevier Science
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1. INTRODUCTION

The problem of flow control has been the subject of many theoretical, experimental, :
computational studies in the past few decades. Control of the flow past a circular cylin
is considered a prototypical problem of bluff body flow control.

Several methodologies for modifying vortex shedding behind a circular cylinder, eitt
with passive geometrical modifications or with an open loop steady forcing, have be
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presented. A nonexhaustive list includes studies of the effect of a splitter plate attache
the cylinder studied, among others, by [2, 4, 26]. Properly placed holes on the surfac
a hollow cylinder were also found to yield a drag reduction [27]; another possible acti
studied was base suction/blowing [22], and rotational oscillations were studied in [5, 2
This latter control action was found to induce dramatic changes in the wake and a signific
drag reduction.

However, the proper integration of control devices in realistic applications requires s
nificant experimentation in order to explore the vast parameter space usually associated
the performance of these devices. Optimization techniques, such as suboptimal control |
have been implemented in the past to identify optimal actuator configurations. These te
nigques require the construction of a suitable cost function and then, using the goverr
Navier—Stokes equations, the solution proceeds in an iterative way to provide an opti
solution to the problem over successive time intervals. Through these methods we c
acquire knowledge of the controlled flow, which may lead to effective control mechanisi
in practical applications. However, these methods have limited applicability to problel
for which the governing equations are difficult to solve or when the design process is ba
on experimental and empirical settings. Moreover, these algorithms, as they require I
gradient information, may converge to local minima of the optimization problem.

Stochastic optimization techniques, such as genetic algorithms (GAs) [10], circumv
some of these difficulties, as they require only the value of the cost function in teri
of the control parameters. Hence they can be easily used in computational as wel
in experimental studies. Moreover, they offer the capability of escaping local minim
However, there are no rigorous proofs of their convergence to global minima, which c
be estimated only a posteriori. Furthermore stochastic algorithms exhibit in general am
slower convergence rate than gradient-based methods. However, this slow convergen
compensated by the inherent parallelism of the method. Information on past successe:
be embedded in the optimization algorithm to further speed up the minimization proc
by allocating new trial points more efficiently.

An attractive aspect of genetic algorithms is that they can be adopted as an optimiza
“wrapper” to many flow solvers and empirical calculations. This property in conjunctic
with their inherent parallelism provides us with a robust optimization tool. Genetic alg
rithms have been applied to a number of optimization problems relevant to engineer
aerodynamics, such as rotor airfoil inverse design [9], active noise control [23], high-den:
cooler design [21], wing shape optimization [20], optimization of diffuser blades [8], ar
steamturbine blades [25]. In most cases genetic algorithms have been applied to engine
problems for which there is scarce availability of other optimization techniques.

In this paper we assess the capabilities of a novel genetic algorithm as an optimization
for the problem of flow control by studying a fundamental configuration of bluff body flow:s
hence allowing us to assess the validity of genetic algorithms in general in a fundame
setting. In addition to this general assessment, the capability of the algorithm propo
here of injecting physical understanding into the design process will be shown by select
as a case study the active control of flow past a circular cylinder using as actuation
modification of the velocity on the cylinder surface. This velocity modification is achieve
by two types of actuators:

(a) ideal jet actuatorsperforming a blowing/suction action on the cylinder surface, an
(b) tangential belt actuatorsvhich modify the surface tangential velocity.
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Mass blowing/suction actuators have been used extensively in the problem of flow cor
[7,11, 13, 15]. The effect of belt actuators as a passive control device for drag reduction
been experimentally studied in [3]. A computational study of the effect of the tangential b
actuators for flow past a circular cylinder has been performed in [4]. The optimization of t
actuator parameters has been developed using a number of techniques (physical insigt
optimal and suboptimal control). In this article we discuss the optimization of the actua
parameters using a clustering genetic algorithm that enables the identification of set
optimal solutions providing an automated sensitivity analysis.

In this work we consider two-dimensional flow Re= 500 past a cylinder equipped
with “belt” and jet actuators. Results from the optimization for the two-dimensional prol
lem are then directly extended to three-dimensional controlled flow for the belt actuatc
demonstrating significant drag reduction.

We note that the goal of this study is not only to show that it is possible to reduce f
drag by using these kind of actuations but also to investigate possible correlations arr
the actuators. Correlations among control parameters can lead to a reduction in the nui
of independent inputs, thus greatly simplifying the problem. Furthermore, knowledge
the parameter sensitivity for both types of actuators can help identify which one is m
suitable for the proposed application: greater parameter sensitivity implies stricter tolera
on the parameter values, which in turn usually translates to an increased difficulty in
implementation. Information on sensitivity and correlations can be valuable for a dee
understanding of the governing physical mechanisms of the controlled flow. The propo
genetic algorithm is therefore shown here to be of great help both in the desing process
in the interpretation of the results.

In Section 2 we describe the governing equations and the numerical solution to
problem. In Section 3 we present the proposed genetic algorithm. In Section 4 we discus
results of our simulations and optimization procedure. In Section 5 some validation res
for a three-dimensional simulation are presented, and in Section 6 the results obtainec
summarized and some future developments are outlined.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

We consider a two-dimensional incompressible viscous flow past a circular cylinder. T
governing equations are the Navier—Stokes equations

@+(V-V)v=—1vp+vv2v €))
dt 0

V.v=0, 2)

wherev is the velocity vectorp, p is the pressure and density of the flow, andenotes
the kinematic viscosity.
The boundary conditions are defined as

V(X,t) = Vext(Xs) 0N the cylinder surfaces 3)
V(X, 1) = Uy as|x| — oo, 4)

where Vex(Xs) is the externally imposed surface velocity, agdis the unit vector in
the streamwise direction. The Reynolds number and Strouhal frequency of the flow
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normalized quantities defiend as

U D f
St=

Re= = —,
v U

where D = 2R is the diameter of the cylinder anél the shedding frequency of the
flow.

The equations are discretized using a staggered, second-order central-difference me
in generalized coordinates [17]. The solution is advanced in time using a fractional s
scheme, in which a third-order Runge—Kutta scheme is used for the nonlinear convec
terms and a Crank—Nicholson scheme is used for the viscous terms. A multigrid solve
used in conjunction with a Gauss—Seidel line-zebra scheme to solve the pressure Po
equation.

An O mesh has been used in this paper. The size of the computational domain has |
set to 30 cylinder diameters, as proposed by benchmark tests in [18].

Simulations were carried out to find the coarsest mesh yielding reliable results,
minimize the simulation time needed for one fitness function evaluation. Three unce
trolled flow simulations were carried out using meshes of different resolutigns,N, =
40 x 80, 80 x 160 and 160x 320, while the time step was fixed to 0.003 for all cases. Th
drag and lift coefficients resulting from the different simulations are compared in Fig.
The results for all three resolutions are in reasonable agreement so that the coarsest
was used in the optimization process. To confirm the validity of the optimization paral
eters, at the end of each optimization cycle a validation run was performed on the fi
N; x Ny = 80 x 160 mesh. The change in the average drag coefficient and the rms va

5
178 180 182 184 186 188 180 192 194
t

FIG. 1. Drag coefficientCp (upper curves) and lift coefficier@_ for simulations using different meshes.
Dashed: 80« 160 mesh, solid: 4& 80 mesh (allN; x Ny). The 160x 320 mesh results are not shown, since
they coincide with the 8& 160 mesh results.
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in the higher resolution calculation was within 10% of the coarse mesh calculation and
results reported in this work are those from the refined validation runs.

3. PROBLEM SETUP

We consider first the two-dimensional incompressible flolRRat= 500 past a circular
cylinder. The cylinder surface is subdividedin= 16 equally sized segments (Fig. 2). Two
different control actions are considered:

(i) Each segment is allowed to move tangentially to the cylinder surface, with all t
segments moving with different but steady velocities.

(ii) Each of the segments is considered to be an ideal mass transpiration actuator,
a zero net mass flow imposed as a constraint in this case.

As discussed in the following sections, of particular interest is the capability of the C
used herein to automatically identify critical points such as the separation points of
uncontrolled flow. FoRe = 500 these points are encompassed by actuators 4 and 13 on
cylinder surface.

The drag coefficient of the flow is defined as

Colw) = / (P@)Nx — T(@)n) dl, 5)

U2 D
where p is the pressure antl the viscous stress tensor on the surface of the cylinde
o = {w1, ..., wn} is a vector ofn = 16 components representing the actuation strengtt
of the surface actuators. This equation, together with Eqgs. (1)—(4), defines the mode
the system to be controlled. The input of the system is the surface velocity, which ¢
be manipulated by means of tangential belts or ideal jet actuators; the output is the
coefficient.

FIG. 2. Position of the actuators on the cylinder surface. Snapshot of the uncontrolled flow vorticity.
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An optimal regulation problem [1] can be set up by considering the functional

H
J(w) = \/%/O [C3(») + 0 Ro| dt, (6)

wherew is the input vectorH is the time horizon considered, which in the present cas
will be four times the Strouhal period of the uncontrolled flow, &id the input weighting
matrix. The functional 6, subjected to the constraints 1, 2, must be minimized with resp
to w in order to minimize the drag.

We note here that the uncontrolled flowRe= 500 is three-dimensional. However, our
goal is to examine a control strategy for the two-dimensional flow. The results of this cont
strategy are then implemented in a three-dimensional setting.

4. THE OPTIMIZATION ALGORITHM

The genetic algorithm used in this paper operates on a parameter population in whicl
input vectorw consists ofone population membeThree operators are defined to modify
the population members:

e Recombination/crossoviewhich generates new trial solution points (offsprings), using
some elements drawn from the population.

e Mutation which randomly changes some of the offsprings’ components.

e Selectionwhich chooses the population elements that will be used by the crossove

For each population elemenfitness functioris defined, measuring in a quantitative way
how close a given solution is to the desired goal. Based on their fitness, the old po
lation members are compared with the newly generated ones, and the solutions with
better fitness constitute the new population members. In this way, iterating the selecti
crossover—mutation process, the population evolves toward the desired optimal solutio

The optimization algorithm used in this paper is a real coded GA that is particularly su
able for finding clusters of good solutions [16], a desirable scheme when smooth, nonsit
point minima are sought. A variable mutation operator, depending on the local fitness ve
and on the global success history of the population, allows the population to avoid lo
minima.

In a first phases population points are initially randomly chosen according to a uniforn
distribution within a defined search volume of dimengiohet the function to be minimized
be denoted byl (w). The inequalityS 3> n must hold for the algorithm to properly work.
After the end of this first phase, the algorithm proceeds as follows:

Step 1: Choose the grid poiat,ax in which J reaches the maximum value:

Wmax = al’g[izﬁfaXSJ (wi )} 7 Imax= J(@max);

Step 2: Choose + 1 different grid points at randonas, . . ., wny1 (breeding set). All
the subsequent operations are performed on this set;
Step 3:Mutation stepfor all the breeding set points, with probability

H:(l—al)-(l—ﬁ%)'% (7
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replace the pointy; with a completely random point, chosen within the search volum
limits;

Step 4:Recombination stefor each of then 4- 1 points determine the centroig;, of
the othem points; i.e.,

n+1

1

j=Lj#i
(@) Generate the offsprin@s; = 2w; — wny1; if wsi is not contained in the search
volume, process next point in the breeding set;
(b) Calculated (wsj); if J(wsj) < Jmax thenwmax is purged from the population and is
substituted by the offsprings;;
Step 5:Selection stepCompute the neway, if necessary;
Step 6: Iterate steps 4 and 5 on the whole breeding set;
Step 7: If the convergence test is not satisfied, return to step 1.

This GA is characterized by four parametersg, y, Jr, and two variables, and J,,,
which are defined in this scheme.

The variabld is the number of consecutive iterations in which the population has not be
changing;i.e., no offspring substituted any population member. It gives an empirical mea:
of the necessity of introducing some new information in the population, by increasing
mutation probability. The variablé,, is the average value of the population fitness: it is
used as a scaling factor.

The parametedr is a threshold value fod (w) used for the convergence test: if all the
population fitness values are smaller than this threshold, then the convergence is decl
With this convergence criterion, the population points will be clustered inside the dom:
defined asw : J(w) < Jr. This final cluster can provide useful information about corre
lations among the parameters as well as information regarding the sensitivity of the ¢
function to these parameters.

The parameter & « < 1 modulates the mutation rate during the optimization proces
and the parameter 8 y < 1 enforces an upper bound to the mutation probability, sinc
0 < B < 1. The term containing the paramefmodulates an order relationship between
the population members. Namely, members that are further away from the target ha
greater mutation probability due to this term.

These parameters are inherent to the present optimization scheme. They may be view
modeling coefficients that aid the algorithm to identify its environment, which, when suitak
selected, can increase the rate of convergence of the scheme. In convergence studies
algorithm [16] for multidimensional prototypical cost functions these parameters were
turn allowed to vary to optimize the overall convergence rate of the scheme. Their optir
values were found to be not so critical in this study. More specifically, the parameter:
and g have been found to have no significant influence on the convergence propertie
the GA when varied within the range of [0.1, 0.9], while the upper bourrésulted in
playing a more important role in escaping local minima; an empirical rule for setting tt
upper bound can be to initially set it to the inverse of the population sizeyi£.1/S, so
that the maximum mutation probability for a population member equals the probability
choosing at random one population member. If the desired goal is not reached and the
appears stuck in a local minimum, thercan be increased, thus increasing the exploratio
capabilities of the GA.
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FIG. 3. lllustration of the mutation/recombination mechanism, for a 2D parameter space. Left: Populati
(dots) and breeding sét); center: mutation of one breeding set point (triangle); right: generation of a new offsprin
(circle).

However, no precise setting rule was identified and the parameter selection remail
part of an ad hoc design depending on the fitness function, for this optimization alg
rithm. Work is under way to make these values online adaptive using information ¢
tained during the optimization process and adopting biologically inspired models of poj
lation behavior. To illustrate the core mechanisms of the algorithm, a sketch demonstra
the recombination and mutation mechanisms is shown in Fig. 3 for a function of tv
parameters.

As a further example of the operation of this GA, the following test function of tw«
parameters is considered here:

Jes(@1, @2) = T4+ 1000- (w2 — w?)® + (1 — wp)?

(@1 +D+(wp+D)?

+ —400-e o1 , w1, w2 €[-2,2]. (9)

The test function has a local minimum near (1, 1), with a quite large banana-shaped bz
and the global minimum is ne&0.91, —0.94); Jes(1, 1) = 74, Jies(—0.91, —0.94) =
34.43. The global minimum is sharper than the local minimum, with a smaller basin. Figur:
shows different instances of the population during the minimization process, together v
a contour plot of the function.

A population of S= 50 elements is used for this minimization task, with the parame
ters @, B, y) = (0.25,0.25, 0.02). The thresholdl; has been fixed to 60. The population
is fairly uniformly distributed inside both basins after a small number of iterations, tht
optimizing the allocation of new trial points; the correct minimum basin is correctly ider
tified after further exploration of the search volume has taken place, and when the wi
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lteration O lteration 160

FIG. 4. Minimization of the modified Rosenbrock function. Level curves of the function: The closed cun
centered on(—1, —1) contains the global minimum basin; the banana-shaped basin contains a local minim
located in (1, 1). The population is denoted by “x” symbols. Some snapshots of the population during the mr
mization process are shown.

population member fitness becomes smaller thanconvergence is declared. The final
population satisfactorily approximates the global minimum basin.

5. RESULTS

We present here the results of the optimization algorithm for cases in which no pen:
terms are introduced for the control energy, iR+~ 0 in Eqg. (6), and for cases in which
the penalizing term is introduced. Note that without any penalization for the control ene
it is possible to derive an upper bound for the regulator performances and also to ob
physical insight into the system behavior. In this context it will be shown how the optimiz
population cluster automatically identifies the actuators that are the most influential
achieving drag reduction.

In the next sections the following cases will be considered:

5.1. No penalty terms, belt actuators

5.1.1. Control using all the actuators

5.1.2. Control using the most influential actuators
5.2. No penalty terms, mass transpiration actuators

5.2.1. Control using all the actuators

5.2.2. Control using the most influential actuators
5.3. Penalty terms

5.3.1. All the actuators, belt actuators

5.3.2. All the actuators, mass transpiration actuators
5.4. Control of three-dimensional flow with belt actuators
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5.1. No Penalty Terms, Belt Actuators

Here we distinguish between results obtained with all 16 actuators of the cylinder surf
active and a subsequent case where the active actuators are those exhibiting high corre
in the first case.

5.1.1. Control Using All the Actuators

A population of S = 50 elements was chosen for the GA, the parametexrsd 8 were
fixed to 0.25; this setting for these two parameters is the same as that in [16]. The uy
boundy has been set to/B = 0.02, as discussed in Section 4.

The threshold)y was fixed to 0.8; this threshold value corresponds to an average dr
coefficient that is 50% of the drag coefficient of the uncontrolled floRext= 500 [19].

InFig. 5the worstfitness value in the population as a function of the iterations performe:
reported; the algorithm converged after about 260 iterations. One GA iteration correspo
to the evaluation of the fitness function on 17 offsprings; therefore the number of functi
evaluations can be obtained by multiplying by 17 the number of iterations. However, in tl
paper we implemented a parallel version of the GA, by simply performing the offspring
computations in parallel on 17 different processors. We used a Cray J90, on which the el
optimization process took abodi h of CPUtime.

To investigate the final population, in Fig. 6 a histogram of the distribution of the po
ulation cluster is reported. It can be observed that most parameters are not clustere
indication of the fact that they have little influence on the fitness function. The most evids
clustering can be observed for the velocities assigned to actuators 3—4 and 13-14, w
contain the separation point of the uncontrolled cylinder.

The solution yielded by the GA indicates that these actuators (3—4 and 13—14) on oppc
sides of the cylinder must always rotate in opposite directions, to delay separation

16

14
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N

Worst fitness in population

o
™

06 S NI e B e _

04 ; i ;
0 50 100 150 200 250
lteration #

FIG. 5. Worst fitness squared in the population as a function of the optimization process iterations. 1
horizontal line is the desired target value.
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FIG. 6. Histogram of the population cluster.

allowing the flow to “slide” more on the cylinder surface. A closer look at the velocity ¢
actuators 4 and 13 reveals no significant correlation between them (Fig. 7). This sugg
that the relevant feature for drag reduction is only the direction of motion of the actuat
and that it must be in opposite directions at all times for the present configuration.
significant correlations were found between all the other parameters.

To provide a quantitative measure of the parameter clustering, we normalized param
mean values in the population with the corresponding standard deviations. This quanti
similar to thez score of a distribution [28], defined as

7=, (10)
Ox
wherex is an element of the distribution and,, o are the distribution’s mean and stan-
dard deviation, respectively. In our case we needed a quantity that measured how mt
distribution is clustered away from zero; therefore we define scbre of the mean with
respect to zero” for each segment

z="" i=1...,16 (11)

wherep;, o; are the mean value and standard deviation of the velocities for the segmer
respectively. A valug; = 0 holds for a distribution that is perfectly centered around zerc
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FIG.7. A plot of the angular velocitw for the actuator 4 ve for the actuator 13. No evident correlation can
be appreciated, apart from the difference in the sign.

while larger values fog; denote distributions that are more clustered at greater distan
from zero, as desired.

The antisymmetric actuation found for the segments containing the separation po
suggests that the significance of the solutions should be analyzed for pairs of actuators
are symmetric with respect to the horizontal diameter. For this purpose we define a “jc
Z" for pairs of actuators

zj = il il g g (12)
Oj O17—i

where the indek denotes pairs of symmetric actuators, ranging from1 (actuators 1 and
16) toi = 8 (actuators 8 and 9). The pairs of actuators containing the separation points
the pair numbers 3 and 4. This quantity measures how many pairs of symmetric actua
are clustered away from zero by summing the absolute values of the means normal
by the respective standard deviations. Also in this case, larger valugsddgnote more
significant clustering.

In Fig. 8 the jointz score defined here is reported for all the pairs of symmetric actuatol
Itis possible to see that pairs 3 and 4 clearly yield the highestia@nobre, thus confirming
also quantitatively our conclusions.

In Fig. 9 the behavior of the separation points is shown for the controlled cylinder; aff
the transient phase there is a marked increase of separation/reattachment events, indit
the formation of many recirculation bubbles streamlining the flow along the cylinder. Tf
serves as evidence that the GA is able to identify the critical points of the flow and
communicate them via the clustering of its population members.

To examine further the optimized configuration, a validation run was performed for tl
best solution in the population. This run was performed on a finer grid, as specified ear!
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Actuator pair

FIG. 8. Jointz scores for pairs of symmetric segments. See text for the definition of this quantity.

In Fig. 10 the behavior of the drag coefficient during the transition from the uncontrolls
and controlled phase can be observed. The transition phase is quite short, and the
appears to settle quickly to the minimal drag configuration. The shedding frequency
drastically modified, while the fluctuating amplitude in the drag coefficient is drastical
reduced.

=0 angles

FIG. 9. Positions of the separation/reattachment points along the cylinder surface. Angles are meas
between—360 and+360 degrees, w.r.t. the center axis of the wake.
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FIG. 10. Validation run for the best population member. The control is switched tn-at5.

In Figs. 11 and 12 time averages of the vorticity contours in the near wake region
shown. They reveal that the wake becomes very elongated, evidence that the vortices t
to detach and roll up at larger distances than in the uncontrolled case, thus reducing
loss of pressure in the back side of the cylinder. It is evident that the flow stays attached
longer on the surface while a well-defined recirculation bubble is formed, thus streamlini
further the effective shape of the body.

Snapshots of the vorticity contours in the near wake region are shown in Fig. 13
the uncontrolled case, for the transition from the uncontrolled to the controlled phase,

FIG. 11. Time average of the vorticity contours near the cylinder, no control.
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FIG.12. Allthe actuators active: Time average of the vorticity contours near the cylinder, control switched

during half a period of the controlled phase. The wake elongation phase and the chan
the vortex shedding are clearly visible from these plots.

Turning the attention to the GA population cluster, apart from actuators 3—4 and 13-
the parameter clustering has no evident symmetry around the streamwise direction. The
of symmetry in the control action can be attributed to the fact that most of the actuators h
little influence on the drag reduction, since the corresponding parameters are not cluste

t* =15 t* =174 t* =198

FIG. 13. Snapshots of the vorticity contours near the cylinder. Top row: Uncontrolled half Strouhal peric
middle row: transition to the controlled mode; bottom row: controlled mode.
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TABLE |
Results Found by the Clustering GA
for Different Search Volume Limits

Limits Drag reduction
[—0.01,0.01] <1%
[-0.1,0.1] 40%
[-0.5, 0.5] 45%
[(-1.1] 50%

Hence it appears natural to suggest that the important parameters for the flow control
only the ones corresponding to actuators containing the separation point in the uncontrc
flow. At the same time all the other actuators could be sliding with random velocities
remain fixed. To verify this hypothesis another validation run was performed, this tin
maintaining active only actuators 3—4 and 13-14. In Fig. 14 the time-averaged vortic
contours are shown. This plot shows that also in this case the wake elongates almo:
before.

Optimization runs were performed in search volumes with different limits for the actuat
velocities, in order to check the optimal control performances for different optimizatic
limits. Table | reports the optimization results for four different search volume limits.

The limitfor the actuator amplitude under which it was not possible to achieve a significz
reduction with this type of actuation is 0.01. With this amplitude limit the populatio

Ao,

FIG. 14. Only four actuators active: Time-averaged vorticity contours near the cylinder, control switched ol
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parameters showed no significant clustering. For all other limits the population cluster
was the same as that for the limits ef1, 1].

5.1.2. Optimization of the Most Influential Actuators

To analyze the effects of the four actuators exhibiting clustering and thus being conside
of fundamental influence on the drag reduction mechanism, another optimization run:
performed using only these four actuators as free parameters. Here it should be empha
that no a priori knowledge of the separation points was necessary as the algorithm was
to identify them through the parameter clustering.

In this case a population of 20 elements was used for actuators 3, 4, 13, and 14, witl
the other actuator parameters set to zero, in order to study the effect of these actuatc
detail. The thresholdy was set to 0.86, which is the value attained for the fitness functic
using only four parameters.

The population clustering in this case is shown in Fig. 15. Comparing these histogre
with those shown in Fig. 6, it is possible to see that the symmetry is lost in this case as
values forws are closer to 0. In the case of the optimization with all the actuators availab
the values ofv; are closer to 0.5, and the same is truedgron the other hand, for the four
parameters the optimal magnitudewafis larger with respect to the other case. The othe
two parameters are much better clustered than in the earlier case, indicating that using
degrees of freedom the parameter sensitivity increasez-$beare analysis is not necessary
in this case, since the clustering is clearer than before.

In this case some correlation was found between the parameiensdw;4, Shown in
Fig. 16. No other significant correlation was found. Contours of the near wake vorticity
not exhibit any marked difference from those shown in Fig. 14.

W O N

-1 -0.5 0 0.5 1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1 -1 -05 0 0.5 1
o segment #13 o segment #14

FIG. 15. Optimization with only four actuators. Histogram of the population cluster.
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FIG. 16. Optimization with only four actuators. A plot of the parameters showing a significant correlation.

However, as can be noted from the comparison between the drag coefficients for the
control configurations, reported in Fig. 17, the drag reduction in the present case is sm:
w.r.t. the reduction given by using all the 16 belt actuators.

Hence these results demonstrate that in this case a larger drag reduction is feasibl
allowing more degrees of freedom to the actuator parameters. By actuating beyond

06 , . , , . . . . :
o

5 10 15 20 25 30 35 40 45 50

FIG. 17. Comparison between the drag coefficients for the two cases using the belt actuators. Contint
line: all the actuators, dashed line: only the most influential actuators used.



GENETIC ALGORITHM FOR CYLINDER DRAG OPTIMIZATION 97

vicinity of the separation points it is possible to adjust the flow velocity before it arrives
the separation point so that the actuators in that region do not face an abrupt change ¢
environment that they are attempting to control. The absence of any correlation in the re:
the actuators suggests that it would be difficult to identify an a priori estimate of the actuc
profile for large numbers of actuators, even for this simplified geometrical configuratior

5.2. No Penalty Terms, Mass Transpiration Actuators

The same set of experiments as before is presented here. Also in this case the sepa
point of the uncontrolled flow has been identified by the GA to play a critical role in the dr:
reduction mechanism, so we maintain the distinction between results obtained with all
actuators active and results where the active actuators are those exhibiting high popul:
correlation in the first case.

The results obtained with these kinds of actuators are very similar to those obtained \
belt actuators; some of these results are reported in what follows.

5.2.1. Results Using All the Actuators

In the case of blowing/suction actuation, all the GA parameters including the thresh
Jr were kept equal to the case of the tangential actuation, in order to consistently comj
the optimization performance of the two types of actuators.

In this case the GA did not converge to the desired threshold, and the limit of 10
iterations was reached without significant improvements of the worst fitness; the muta
probability was saturated to its maximum allowed value, as is clear from Fig. 18. This
evidence that there is a high probability that the minimum reached is a global one.

A histogram of the final population cluster is shown in Fig. 19. Also in this case ma
parameters are not clustered, and the most evident clustering can be observed for th
locities assigned to actuators 3—4 and 13-14, also for these kinds of actuators. This m

T T T T T T T T T

0 2 B 7

8

&

g

2 15F -1

1 1 1 1 1 1 1 A1 L 1
0 100 200 300 400 500 600 700 800 900 1000
# iterations
0.02 T T T T T T T {
Foot5-
o
4
o
5 001f
£
<3
o
§ 0.005
4
0 1 H 1 ] 1 1 Il 1
0 100 200 300 400 500 600 7 800 900 1000
# iterations

FIG. 18. Ideal jet actuators. Top: Worst fitness in the population as a function of the optimization proce
iterations; bottom: mutation probability averaged over the population.
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FIG. 19. Population clustering, ideal jet actuators: All the parameters are active.

that these actuators are the most important also in this case; however, the solution yie
by the GA indicates that these actuators (3—4 and 13-14) must always operate on a su
mode, to delay separation by allowing the flow to “slide” more on the cylinder surface.

Also in this case the most important segments for control are those containing the s¢
ration point, as indicated by the jointscores reported in Fig. 20.

Joint z-score

0 . ; ; ; ; ;
1 2 3 4 5 6 7 8
Actuator pair

FIG. 20. Jet actuators, joirt scores for the optimized population.
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FIG. 21. Validation run, ideal jet actuators: Comparison between the drag coefficient for the case using
the actuators (full line) and the case using only the first four most significant actuators (broken line). Contrc
switched on at* = 5 for both cases.

Furthermore, there is no significant correlation between the parameters; this confi
that the relevant feature of drag reduction is that the actuators containing the separe
point must perform either antisymmetric or symmetric actions, depending on the act
considered, but the actuation strengths do not have to be necessarily correlated.

The validation run performed for the best solution in the population is reported in Fig. -
which shows a plot of the drag coefficient during the transition from the uncontrolled
the controlled phase. The same plot also reports the drag coefficient resulting from
control performed using only the actuators containing the separation point, and using al
other actuators only to satisfy the zero net mass constraint. In this case the drag redu
obtained is not smaller when fewer actuators are used, an indication of the fact that \
ideal jet actuators the actuators containing the separation point play a central role in
drag reduction mechanism.

The time average of the vorticity contours near the cylinder (Fig. 22) shows that t
modification in the flow behavior due to this kind of actuation is very similar to the tangent
actuation case.

5.2.2. Optimization of the Most Influential Actuators

In this case another optimization run was performed using only the four actuators c
taining the separation point as free parameters, all the other actuators being used unic
to satisfy the zero net mass constraint. The GA parameters are the same as those |
optimization with four actuators and tangential actuators, i.e., actuators 3, 4, 13, and
with all the other actuator parameters set to zero. The GA parameters are fixed to the s
value as in the belt actuation optimization with four actuators.

The population clustering in this case is shown in Fig. 23. This clustering is the same as
clustering obtained for these actuators in the optimization using 16 parameters, except
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FIG. 22. Ideal jet actuators, only four actuators active: Time-averaged vorticity contours near the cylind
control switched on.

a more marked sensitivity can be noticed: this implies that when fewer actuators are u:
their parameter values become more critical. The validation run showed no improveme
with respect to the previous case. This provides us with further evidence that in this ¢
only the actuators containing the separation point are truly important for achieving di
reduction. However, in the case of the tangential belt actuators the reduction is a bit la
than what we observed here.

5 5
4 4
3 3
2 2
1 |-| 1
0 0
-01 -0.05 0 0.05 0.1 =01 -0.05 0 0.05 0.1
W, W
3 4
5 5
4 4
3 3
2 2
1 1
4] 4]
~-0.1 -0.05 0 0.05 0.1 ~0.1 -0.05 0 0.05 0.1
13 ¥

FIG. 23. Ideal jet actuators, optimization run with four actuators: Population clustering.
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5.3. Optimization with Penalty Terms for the Control Energy

In the previous cases it was decided to give more importance to some parameters
pending on their sensitivity as signified by the parameter clustering. The assumption bel
this criterion is that a low sensitivity (as signified by a nonclustered population) of the c
function for a parameter implies that it has the same influence on the fitness function
every value it assumes in its basin. Therefore, if the value 0 is included in the basin ¢
low-sensitivity parameter, setting it to 0 will not change the fitness function significant
This allowed us to reduce the number of degrees of freedom but it provides a rather ¢
trary criterion for the parameter selection. In the following sections it will be shown ho
penalizing the control energy affects the optimal basin, being of great help in the proc
of selection of suitable solutions.

5.4. Control with Belt Actuators

For the case study considered, since we do not wish to prescribe in advance wi
actuators will be more important than others, weRet « - |6, wherel 16 is the 16x 16
identity matrix, and the scalar= 20, a value chosen in such a way that the two terms in th
functional are roughly of the same order of magnitude in the initial stages of the optimizati
For this case, the GA parameters are set to the same values as the correspondent case v
penalty term. Only the thresholl} 15 setto 1, a larger value with respect to the other cas
to take into account the additional term due to the control energy.

The final parameter distribution for this optimization is shown in Fig. 24. All the paran
eters are well clustered, and the ones that are not as important for the drag reductior
clustered around 0, as expected.

In Fig. 25 the most significant correlations between the parameters are plotted. S
adjacent actuators are correlated, an indication of the presence of a quite regular vel
pattern. Also, there are correlations between angular velocities of actuators that are nec
front of the cylinder and actuators near the rear part, on the wake side. This indicates tha
actuators that are near the front actually have animportance in the overall process. Penal
the control energy allowed the GA to retain only solutions in which a net, nonzero angL
speed is necessary for drag reduction, thus allowing us to uncover the optimal velo
profile shape.

The resulting drag reduction for the best individual in the population is the same as t
in the first case, meaning that the minimum reached in this case coincides with that rea
earlier.

5.5. Control with Mass Transpiration Actuators

Also with the jet actuators the control energy was penalized to have the two terms
the functional be of the same order of magnitude in the initial stages of the optimizati
ThereforeR = « - 1'% anda = 200 in this case. All the other GA parameters were kep
equal to those used in the optimization without penalty terms,Janeas fixed to 1.5 in this
case. The GA converged in about 300 iterations, yielding the population cluster reporte
Fig. 26.

The resulting drag reduction performances were the same as those in the case \
out penalization; therefore they are not reported here. A remarkable difference w.r.t.
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FIG. 24. Optimization with all the actuators, with control energy penalization. Histogram of the final popt

lation.

FIG. 25. Optimization with all the actuators, with control energy penalization. Most significant correlations
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FIG. 26. Jetactuators, optimization with all the actuators, with control energy penalization. Histogram of t
final population.

belt actuator optimization is that in this case a control energy penalization equivalent to
used for the belt actuator optimization was used, but the population cluster width did

change significantly. This implies that with jet actuators the parameter sensitivity is mt
less marked, or in other words the minimum basin is much more shallow in this function
From a practical viewpoint, it can be inferred that implementation tolerances can be lar
in the case of jet actuators, meaning that practical implementation would be easier in

respect for this kind of actuator.

6. TWO-DIMENSIONAL CONTROL FOR THREE-DIMENSIONAL FLOWS

The optimization parameters that were obtained for the two-dimensional simulatic
are now directly employed for a three-dimensional cylinder viRt= 500. It is shown
that 2D parameters lead to drag reduction when they are suitably extended for the 3D
ometry. A three-dimensional simulation setup with a mesh With< Ny x N, = 160 x
320 x 48 has been used; the cylinder is 5 diameters long, thus ensuring that the si
lated flow is three-dimensional [12]. Indirection the tangential velocity has been fixed
to be constant and equal to the 2D actuator velocity, to simulate three-dimensic
belts.

In Fig. 27 it is possible to see a plot of isosurfaces of positive and negative spanw
vorticity, when the belts are switched off. The separation region is evident from these pl
and it is also possible to see that the vortices are shed from a region near the cylinder.
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FIG. 27. Uncontrolled shedding of one vortex in the 3D case for the cylinder flow. Blue: IsosusfaeeD.1;
red: isosurfacey, = —0.1.

shedding of one vortex is shown in these plots. In Fig. 28 the transition from uncontroll
shedding to the steady-state controlled shedding is shown; the plots show the same vor
isosurfaces as before, starting right after the acceleration phase of the belts. Lookin
the cylinder surface it is possible to clearly see the separation point moving nearer to
wake region of the cylinder, as well as an elongation of the near wake region. In Fig. 29
shedding of a vortex in steady state is shown. It is evident that the flow stays much m
attached to the cylinder surface, in this case.

The plot of the drag coefficient, corresponding to these vorticity plots, is shown in Fig. &
After a transition phase, it is possible to see that the drag coefficient settles at a value
is about 50% of the uncontrolled drag coefficient, also in this more realistic simulatic
This, however, does not mean that the solution found is the global optimum also in
three-dimensional case: an optimization run should be performed taking into account th
dimensional simulations to be able to draw such a conclusion. This task is the sub

FIG. 28. 3D case cylinder flow, transition from uncontrolled to controlled regime (belt actuators). Blue
Isosurfacev, = 0.1; red: isosurface, = —0.1.
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FIG.29. 3D case cylinder flow, controlled regime (belt actuators). Blue: Isosuiaee 0.1; red: isosurface
w, = —0.1.

of ongoing work, due to the high computational demand of accurate three-dimensic
simulations. An alternative approach using reduced-order models derived from DNS s
ulations, in conjunction with the proposed GA, also appears to be a promising venue.

However, it is possible to see that the results coming from much less expensive t
dimensional simulations can be extended to three dimensions in a straightforward v
especially when the underlying physical mechanisms are known to be two-dimensiona
in the present case study.

o6k S PR . T R L TR s H

05 ; ) i ; s ; ; s ; s
0

FIG. 30. 3D case cylinder flow, drag coefficient (belt actuators). Transition from the uncontrolled to tt
controlled regime.
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7. CONCLUSIONS

A clustering GA was implemented to study the drag reduction yielded by controlling tl
velocity field on the surface of a cylinder using idealized actuators. The clustering feat
of the algorithm allowed us to examine the parameter correlations and to arrive at opti
surface velocity configurations, yielding a drag reduction of about 50%.

The possibility of using a few strategically placed actuators to obtain a significant dr
reduction was explored using the clustering diagnostics of this method. The genetic al
rithm provides a systematic way of identifying the significant parameters of the proble
pertaining to critical points of the flow such as the separation points. An antisymmet
actuation near the separation points on both sides of the cylinder has been found to be
most important feature of this control system, in the case of belt actuators, while a ste
suction in correspondence to the same actuators has been found to have the same ¢
The first conclusion that can be drawn is that the GA provided quantitative evidence
what physical understanding would suggest; i.e., to reduce the drag the flow should ¢
attached to the body surface as long as possible. This “automatic discovery” property of
GA suggests its utilization in cases where scarce physical understanding of the undert
governing mechanism is available. Flow simulations and experiments aReighmbers
could be prime targets for this approach. However, the large number of iterations usec
GAs and the high computational cost of simulations may be limiting factors. Work is und
way to circumvent this difficulty by adapting low-order models to represent the physics
the flow and by accelerating the convergence speed of the GAs exploiting the informat
that can be gained by unsuccessful trial points during the optimization route.

With regard to the various types of actuation, some conclusion can be drawn by comj
ing the classes of solutions found for the two different kinds of idealized actuation. Tt
comparison reveals that for mass transpiration the related cost function has a shallower
imum basin. This implies that the tolerances for the mass transpiration actuation stren
can be larger than the tolerances needed for the belt actuators, making them possibly €
to implement.

The results obtained using two-dimensional simulations are shown to be useful for th
dimensions when the actuators are suitably extended to the third dimension of the fi
This suggests that optimization in two dimensions followed by a validation of the results
three dimensions is a viable approach to the rapid design of realistic control devices.
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