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A real coded genetic algorithm is implemented for the optimization of actuator
parameters for cylinder drag minimization. We consider two types of idealized actu-
ators that are allowed either to move steadily and tangentially to the cylinder surface
(“belts”) or to steadily blow/suck with a zero net mass constraint. The genetic algo-
rithm we implement has the property of identifying minima basins, rather than single
optimum points. The knowledge of the shape of the minimum basin enables further
insights into the system properties and provides a sensitivity analysis in a fully auto-
mated way. The drag minimization problem is formulated as an optimal regulation
problem. By means of the clustering property of the present genetic algorithm, a set of
solutions producing drag reduction of up to 50% is identified. A comparison between
the two types of actuators, based on the clustering property of the algorithm, indi-
cates that blowing/suction actuation parameters are associated with larger tolerances
when compared to optimal parameters for the belt actuators. The possibility of using
a few strategically placed actuators to obtain a significant drag reduction is explored
using the clustering diagnostics of this method. The optimal belt-actuator parameters
obtained by optimizing the two-dimensional case is employed in three-dimensional
simulations, by extending the actuators across the span of the cylinder surface. The
three-dimensional controlled flow exhibits a strong two-dimensional character near
the cylinder surface, resulting in significant drag reduction.c© 2002 Elsevier Science
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1. INTRODUCTION

The problem of flow control has been the subject of many theoretical, experimental, and
computational studies in the past few decades. Control of the flow past a circular cylinder
is considered a prototypical problem of bluff body flow control.

Several methodologies for modifying vortex shedding behind a circular cylinder, either
with passive geometrical modifications or with an open loop steady forcing, have been
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presented. A nonexhaustive list includes studies of the effect of a splitter plate attached to
the cylinder studied, among others, by [2, 4, 26]. Properly placed holes on the surface of
a hollow cylinder were also found to yield a drag reduction [27]; another possible action
studied was base suction/blowing [22], and rotational oscillations were studied in [5, 24].
This latter control action was found to induce dramatic changes in the wake and a significant
drag reduction.

However, the proper integration of control devices in realistic applications requires sig-
nificant experimentation in order to explore the vast parameter space usually associated with
the performance of these devices. Optimization techniques, such as suboptimal control [15],
have been implemented in the past to identify optimal actuator configurations. These tech-
niques require the construction of a suitable cost function and then, using the governing
Navier–Stokes equations, the solution proceeds in an iterative way to provide an optimal
solution to the problem over successive time intervals. Through these methods we could
acquire knowledge of the controlled flow, which may lead to effective control mechanisms
in practical applications. However, these methods have limited applicability to problems
for which the governing equations are difficult to solve or when the design process is based
on experimental and empirical settings. Moreover, these algorithms, as they require local
gradient information, may converge to local minima of the optimization problem.

Stochastic optimization techniques, such as genetic algorithms (GAs) [10], circumvent
some of these difficulties, as they require only the value of the cost function in terms
of the control parameters. Hence they can be easily used in computational as well as
in experimental studies. Moreover, they offer the capability of escaping local minima.
However, there are no rigorous proofs of their convergence to global minima, which can
be estimated only a posteriori. Furthermore stochastic algorithms exhibit in general a much
slower convergence rate than gradient-based methods. However, this slow convergence is
compensated by the inherent parallelism of the method. Information on past successes can
be embedded in the optimization algorithm to further speed up the minimization process
by allocating new trial points more efficiently.

An attractive aspect of genetic algorithms is that they can be adopted as an optimization
“wrapper” to many flow solvers and empirical calculations. This property in conjunction
with their inherent parallelism provides us with a robust optimization tool. Genetic algo-
rithms have been applied to a number of optimization problems relevant to engineering
aerodynamics, such as rotor airfoil inverse design [9], active noise control [23], high-density
cooler design [21], wing shape optimization [20], optimization of diffuser blades [8], and
steam turbine blades [25]. In most cases genetic algorithms have been applied to engineering
problems for which there is scarce availability of other optimization techniques.

In this paper we assess the capabilities of a novel genetic algorithm as an optimization tool
for the problem of flow control by studying a fundamental configuration of bluff body flows,
hence allowing us to assess the validity of genetic algorithms in general in a fundamental
setting. In addition to this general assessment, the capability of the algorithm proposed
here of injecting physical understanding into the design process will be shown by selecting
as a case study the active control of flow past a circular cylinder using as actuation the
modification of the velocity on the cylinder surface. This velocity modification is achieved
by two types of actuators:

(a) ideal jet actuators, performing a blowing/suction action on the cylinder surface, and
(b) tangential belt actuators, which modify the surface tangential velocity.
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Mass blowing/suction actuators have been used extensively in the problem of flow control
[7, 11, 13, 15]. The effect of belt actuators as a passive control device for drag reduction has
been experimentally studied in [3]. A computational study of the effect of the tangential belt
actuators for flow past a circular cylinder has been performed in [4]. The optimization of the
actuator parameters has been developed using a number of techniques (physical insight and
optimal and suboptimal control). In this article we discuss the optimization of the actuator
parameters using a clustering genetic algorithm that enables the identification of sets of
optimal solutions providing an automated sensitivity analysis.

In this work we consider two-dimensional flow atRe= 500 past a cylinder equipped
with “belt” and jet actuators. Results from the optimization for the two-dimensional prob-
lem are then directly extended to three-dimensional controlled flow for the belt actuators,
demonstrating significant drag reduction.

We note that the goal of this study is not only to show that it is possible to reduce the
drag by using these kind of actuations but also to investigate possible correlations among
the actuators. Correlations among control parameters can lead to a reduction in the number
of independent inputs, thus greatly simplifying the problem. Furthermore, knowledge of
the parameter sensitivity for both types of actuators can help identify which one is more
suitable for the proposed application: greater parameter sensitivity implies stricter tolerance
on the parameter values, which in turn usually translates to an increased difficulty in the
implementation. Information on sensitivity and correlations can be valuable for a deeper
understanding of the governing physical mechanisms of the controlled flow. The proposed
genetic algorithm is therefore shown here to be of great help both in the desing process and
in the interpretation of the results.

In Section 2 we describe the governing equations and the numerical solution to the
problem. In Section 3 we present the proposed genetic algorithm. In Section 4 we discuss the
results of our simulations and optimization procedure. In Section 5 some validation results
for a three-dimensional simulation are presented, and in Section 6 the results obtained are
summarized and some future developments are outlined.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

We consider a two-dimensional incompressible viscous flow past a circular cylinder. The
governing equations are the Navier–Stokes equations

dv
dt
+ (v · ∇)v = − 1

ρ
∇P + ν∇2v (1)

∇ · v = 0, (2)

wherev is the velocity vector,P, ρ is the pressure and density of the flow, andν denotes
the kinematic viscosity.

The boundary conditions are defined as

v(x, t) = Vext(xs) on the cylinder surfacexs (3)

v(x, t) = U∞ex as|x| → ∞, (4)

whereVext(xs) is the externally imposed surface velocity, andex is the unit vector in
the streamwise direction. The Reynolds number and Strouhal frequency of the flow are
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normalized quantities defiend as

Re= U∞D

ν
St= f D

U∞
,

where D = 2R is the diameter of the cylinder andf the shedding frequency of the
flow.

The equations are discretized using a staggered, second-order central-difference method
in generalized coordinates [17]. The solution is advanced in time using a fractional step
scheme, in which a third-order Runge–Kutta scheme is used for the nonlinear convection
terms and a Crank–Nicholson scheme is used for the viscous terms. A multigrid solver is
used in conjunction with a Gauss–Seidel line-zebra scheme to solve the pressure Poisson
equation.

An O mesh has been used in this paper. The size of the computational domain has been
set to 30 cylinder diameters, as proposed by benchmark tests in [18].

Simulations were carried out to find the coarsest mesh yielding reliable results, to
minimize the simulation time needed for one fitness function evaluation. Three uncon-
trolled flow simulations were carried out using meshes of different resolutions,Nr × Nθ =
40× 80, 80× 160, and 160× 320, while the time step was fixed to 0.003 for all cases. The
drag and lift coefficients resulting from the different simulations are compared in Fig. 1.
The results for all three resolutions are in reasonable agreement so that the coarsest mesh
was used in the optimization process. To confirm the validity of the optimization param-
eters, at the end of each optimization cycle a validation run was performed on the finer
Nr × Nθ = 80× 160 mesh. The change in the average drag coefficient and the rms value

FIG. 1. Drag coefficientCD (upper curves) and lift coefficientCL for simulations using different meshes.
Dashed: 80× 160 mesh, solid: 40× 80 mesh (allNr × Nθ ). The 160× 320 mesh results are not shown, since
they coincide with the 80× 160 mesh results.
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in the higher resolution calculation was within 10% of the coarse mesh calculation and the
results reported in this work are those from the refined validation runs.

3. PROBLEM SETUP

We consider first the two-dimensional incompressible flow atRe= 500 past a circular
cylinder. The cylinder surface is subdivided inn = 16 equally sized segments (Fig. 2). Two
different control actions are considered:

(i) Each segment is allowed to move tangentially to the cylinder surface, with all the
segments moving with different but steady velocities.

(ii) Each of the segments is considered to be an ideal mass transpiration actuator, with
a zero net mass flow imposed as a constraint in this case.

As discussed in the following sections, of particular interest is the capability of the GA
used herein to automatically identify critical points such as the separation points of the
uncontrolled flow. ForRe= 500 these points are encompassed by actuators 4 and 13 on the
cylinder surface.

The drag coefficient of the flow is defined as

CD(ω) = 2

ρU2∞D

∫
cyl
(p(ω)nx − τix(ω)ni) dl, (5)

where p is the pressure andτi x the viscous stress tensor on the surface of the cylinder;
ω = {ω1, . . . , ωn} is a vector ofn = 16 components representing the actuation strengths
of the surface actuators. This equation, together with Eqs. (1)–(4), defines the model of
the system to be controlled. The input of the system is the surface velocity, which can
be manipulated by means of tangential belts or ideal jet actuators; the output is the drag
coefficient.

FIG. 2. Position of the actuators on the cylinder surface. Snapshot of the uncontrolled flow vorticity.
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An optimal regulation problem [1] can be set up by considering the functional

J(ω) =
√

1

H

∫ H

0

[
C2

D(ω)+ ωT Rω
]

dt, (6)

whereω is the input vector,H is the time horizon considered, which in the present case
will be four times the Strouhal period of the uncontrolled flow, andR is the input weighting
matrix. The functional 6, subjected to the constraints 1, 2, must be minimized with respect
toω in order to minimize the drag.

We note here that the uncontrolled flow atRe= 500 is three-dimensional. However, our
goal is to examine a control strategy for the two-dimensional flow. The results of this control
strategy are then implemented in a three-dimensional setting.

4. THE OPTIMIZATION ALGORITHM

The genetic algorithm used in this paper operates on a parameter population in which an
input vectorω consists ofone population member. Three operators are defined to modify
the population members:

• Recombination/crossover, which generates new trial solution points (offsprings), using
some elements drawn from the population.
• Mutation, which randomly changes some of the offsprings’ components.
• Selection, which chooses the population elements that will be used by the crossover.

For each population element afitness functionis defined, measuring in a quantitative way
how close a given solution is to the desired goal. Based on their fitness, the old popu-
lation members are compared with the newly generated ones, and the solutions with the
better fitness constitute the new population members. In this way, iterating the selection–
crossover–mutation process, the population evolves toward the desired optimal solution.

The optimization algorithm used in this paper is a real coded GA that is particularly suit-
able for finding clusters of good solutions [16], a desirable scheme when smooth, nonsingle
point minima are sought. A variable mutation operator, depending on the local fitness value
and on the global success history of the population, allows the population to avoid local
minima.

In a first phaseSpopulation points are initially randomly chosen according to a uniform
distribution within a defined search volume of dimensionn. Let the function to be minimized
be denoted byJ(ω). The inequalitySÀ n must hold for the algorithm to properly work.
After the end of this first phase, the algorithm proceeds as follows:

Step 1: Choose the grid pointωmax in which J reaches the maximum value:

ωmax= arg
[

max
i=1,...,S

J(ωi )
]
; Jmax= J(ωmax);

Step 2: Choosen+ 1 different grid points at random:ω1, . . . , ωn+1 (breeding set). All
the subsequent operations are performed on this set;

Step 3:Mutation step: for all the breeding set points, with probability

Pi = (1− α I ) ·
(

1− β (J(wi )−JT )
Jαv

)
· γ, (7)
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replace the pointωi with a completely random point, chosen within the search volume
limits;

Step 4:Recombination step: for each of then+ 1 points determine the centroid,ωi , of
the othern points; i.e.,

ωi = 1

n

n+1∑
j=1, j 6=i

ω j . (8)

(a) Generate the offspringωsi = 2ωi −ωn+1; if ωsi is not contained in the search
volume, process next point in the breeding set;

(b) CalculateJ(ωsi); if J(ωsi)< Jmax thenωmax is purged from the population and is
substituted by the offspringωsi;

Step 5:Selection step: Compute the newJmax, if necessary;
Step 6: Iterate steps 4 and 5 on the whole breeding set;
Step 7: If the convergence test is not satisfied, return to step 1.

This GA is characterized by four parameters,α, β, γ, JT , and two variables,I and Jav,
which are defined in this scheme.

The variableI is the number of consecutive iterations in which the population has not been
changing; i.e., no offspring substituted any population member. It gives an empirical measure
of the necessity of introducing some new information in the population, by increasing the
mutation probability. The variableJav is the average value of the population fitness: it is
used as a scaling factor.

The parameterJT is a threshold value forJ(ω) used for the convergence test: if all the
population fitness values are smaller than this threshold, then the convergence is declared.
With this convergence criterion, the population points will be clustered inside the domain
defined asw : J(ω)< JT . This final cluster can provide useful information about corre-
lations among the parameters as well as information regarding the sensitivity of the cost
function to these parameters.

The parameter 0≤ α ≤ 1 modulates the mutation rate during the optimization process,
and the parameter 0≤ γ ≤ 1 enforces an upper bound to the mutation probability, since
0≤ β ≤ 1. The term containing the parameterβ modulates an order relationship between
the population members. Namely, members that are further away from the target have a
greater mutation probability due to this term.

These parameters are inherent to the present optimization scheme. They may be viewed as
modeling coefficients that aid the algorithm to identify its environment, which, when suitably
selected, can increase the rate of convergence of the scheme. In convergence studies of the
algorithm [16] for multidimensional prototypical cost functions these parameters were in
turn allowed to vary to optimize the overall convergence rate of the scheme. Their optimal
values were found to be not so critical in this study. More specifically, the parametersα

andβ have been found to have no significant influence on the convergence properties of
the GA when varied within the range of [0.1, 0.9], while the upper boundγ resulted in
playing a more important role in escaping local minima; an empirical rule for setting this
upper bound can be to initially set it to the inverse of the population size, i.e.,γ = 1/S, so
that the maximum mutation probability for a population member equals the probability of
choosing at random one population member. If the desired goal is not reached and the GA
appears stuck in a local minimum, thenγ can be increased, thus increasing the exploration
capabilities of the GA.
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FIG. 3. Illustration of the mutation/recombination mechanism, for a 2D parameter space. Left: Population
(dots) and breeding set(∗); center: mutation of one breeding set point (triangle); right: generation of a new offspring
(circle).

However, no precise setting rule was identified and the parameter selection remains a
part of an ad hoc design depending on the fitness function, for this optimization algo-
rithm. Work is under way to make these values online adaptive using information ob-
tained during the optimization process and adopting biologically inspired models of popu-
lation behavior. To illustrate the core mechanisms of the algorithm, a sketch demonstrating
the recombination and mutation mechanisms is shown in Fig. 3 for a function of two
parameters.

As a further example of the operation of this GA, the following test function of two
parameters is considered here:

Jtest(ω1, ω2) = 74+ 1000· (ω2− ω2
1

)2+ (1− ω1)
2

+−400· e− (ω1+1)2+(ω2+1)2

0.1 , ω1, ω2 ∈ [−2, 2]. (9)

The test function has a local minimum near (1, 1), with a quite large banana-shaped basin,
and the global minimum is near(−0.91,−0.94); Jtest(1, 1) = 74, Jtest(−0.91,−0.94) =
34.43. The global minimum is sharper than the local minimum, with a smaller basin. Figure 4
shows different instances of the population during the minimization process, together with
a contour plot of the function.

A population ofS= 50 elements is used for this minimization task, with the parame-
ters (α, β, γ ) = (0.25, 0.25, 0.02). The thresholdJT has been fixed to 60. The population
is fairly uniformly distributed inside both basins after a small number of iterations, thus
optimizing the allocation of new trial points; the correct minimum basin is correctly iden-
tified after further exploration of the search volume has taken place, and when the worst
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FIG. 4. Minimization of the modified Rosenbrock function. Level curves of the function: The closed curve
centered on(−1,−1) contains the global minimum basin; the banana-shaped basin contains a local minimum
located in (1, 1). The population is denoted by “x” symbols. Some snapshots of the population during the mini-
mization process are shown.

population member fitness becomes smaller thanJT , convergence is declared. The final
population satisfactorily approximates the global minimum basin.

5. RESULTS

We present here the results of the optimization algorithm for cases in which no penalty
terms are introduced for the control energy, i.e.,R= 0 in Eq. (6), and for cases in which
the penalizing term is introduced. Note that without any penalization for the control energy
it is possible to derive an upper bound for the regulator performances and also to obtain
physical insight into the system behavior. In this context it will be shown how the optimized
population cluster automatically identifies the actuators that are the most influential for
achieving drag reduction.

In the next sections the following cases will be considered:

5.1. No penalty terms, belt actuators
5.1.1. Control using all the actuators
5.1.2. Control using the most influential actuators

5.2. No penalty terms, mass transpiration actuators
5.2.1. Control using all the actuators
5.2.2. Control using the most influential actuators

5.3. Penalty terms
5.3.1. All the actuators, belt actuators
5.3.2. All the actuators, mass transpiration actuators

5.4. Control of three-dimensional flow with belt actuators
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5.1. No Penalty Terms, Belt Actuators

Here we distinguish between results obtained with all 16 actuators of the cylinder surface
active and a subsequent case where the active actuators are those exhibiting high correlation
in the first case.

5.1.1. Control Using All the Actuators

A population ofS= 50 elements was chosen for the GA; the parametersα andβ were
fixed to 0.25; this setting for these two parameters is the same as that in [16]. The upper
boundγ has been set to 1/S= 0.02, as discussed in Section 4.

The thresholdJT was fixed to 0.8; this threshold value corresponds to an average drag
coefficient that is 50% of the drag coefficient of the uncontrolled flow atRe= 500 [19].

In Fig. 5 the worst fitness value in the population as a function of the iterations performed is
reported; the algorithm converged after about 260 iterations. One GA iteration corresponds
to the evaluation of the fitness function on 17 offsprings; therefore the number of function
evaluations can be obtained by multiplying by 17 the number of iterations. However, in this
paper we implemented a parallel version of the GA, by simply performing the offsprings’
computations in parallel on 17 different processors. We used a Cray J90, on which the entire
optimization process took about 4 h of CPUtime.

To investigate the final population, in Fig. 6 a histogram of the distribution of the pop-
ulation cluster is reported. It can be observed that most parameters are not clustered, an
indication of the fact that they have little influence on the fitness function. The most evident
clustering can be observed for the velocities assigned to actuators 3– 4 and 13–14, which
contain the separation point of the uncontrolled cylinder.

The solution yielded by the GA indicates that these actuators (3–4 and 13–14) on opposite
sides of the cylinder must always rotate in opposite directions, to delay separation by

FIG. 5. Worst fitness squared in the population as a function of the optimization process iterations. The
horizontal line is the desired target value.
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FIG. 6. Histogram of the population cluster.

allowing the flow to “slide” more on the cylinder surface. A closer look at the velocity of
actuators 4 and 13 reveals no significant correlation between them (Fig. 7). This suggests
that the relevant feature for drag reduction is only the direction of motion of the actuators
and that it must be in opposite directions at all times for the present configuration. No
significant correlations were found between all the other parameters.

To provide a quantitative measure of the parameter clustering, we normalized parameter
mean values in the population with the corresponding standard deviations. This quantity is
similar to thez score of a distribution [28], defined as

zx = x − µx

σx
, (10)

wherex is an element of the distribution andµx, σx are the distribution’s mean and stan-
dard deviation, respectively. In our case we needed a quantity that measured how much a
distribution is clustered away from zero; therefore we define a “z score of the mean with
respect to zero” for each segment

zi = |µi |
σi
, i = 1, . . . ,16, (11)

whereµi , σi are the mean value and standard deviation of the velocities for the segmenti ,
respectively. A valuezi = 0 holds for a distribution that is perfectly centered around zero,
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FIG. 7. A plot of the angular velocityω for the actuator 4 vsω for the actuator 13. No evident correlation can
be appreciated, apart from the difference in the sign.

while larger values forzi denote distributions that are more clustered at greater distance
from zero, as desired.

The antisymmetric actuation found for the segments containing the separation points
suggests that the significance of the solutions should be analyzed for pairs of actuators that
are symmetric with respect to the horizontal diameter. For this purpose we define a “joint
z” for pairs of actuators

z ji = |µi |
σi
+ |µ17−i |

σ17−i
, i = 1, . . . ,8, (12)

where the indexi denotes pairs of symmetric actuators, ranging fromi = 1 (actuators 1 and
16) toi = 8 (actuators 8 and 9). The pairs of actuators containing the separation points are
the pair numbers 3 and 4. This quantity measures how many pairs of symmetric actuators
are clustered away from zero by summing the absolute values of the means normalized
by the respective standard deviations. Also in this case, larger values ofz ji denote more
significant clustering.

In Fig. 8 the jointz score defined here is reported for all the pairs of symmetric actuators.
It is possible to see that pairs 3 and 4 clearly yield the highest jointz score, thus confirming
also quantitatively our conclusions.

In Fig. 9 the behavior of the separation points is shown for the controlled cylinder; after
the transient phase there is a marked increase of separation/reattachment events, indicating
the formation of many recirculation bubbles streamlining the flow along the cylinder. This
serves as evidence that the GA is able to identify the critical points of the flow and to
communicate them via the clustering of its population members.

To examine further the optimized configuration, a validation run was performed for the
best solution in the population. This run was performed on a finer grid, as specified earlier.
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FIG. 8. Jointz scores for pairs of symmetric segments. See text for the definition of this quantity.

In Fig. 10 the behavior of the drag coefficient during the transition from the uncontrolled
and controlled phase can be observed. The transition phase is quite short, and the flow
appears to settle quickly to the minimal drag configuration. The shedding frequency is
drastically modified, while the fluctuating amplitude in the drag coefficient is drastically
reduced.

FIG. 9. Positions of the separation/reattachment points along the cylinder surface. Angles are measured
between−360 and+360 degrees, w.r.t. the center axis of the wake.
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FIG. 10. Validation run for the best population member. The control is switched on att∗ = 5.

In Figs. 11 and 12 time averages of the vorticity contours in the near wake region are
shown. They reveal that the wake becomes very elongated, evidence that the vortices begin
to detach and roll up at larger distances than in the uncontrolled case, thus reducing the
loss of pressure in the back side of the cylinder. It is evident that the flow stays attached for
longer on the surface while a well-defined recirculation bubble is formed, thus streamlining
further the effective shape of the body.

Snapshots of the vorticity contours in the near wake region are shown in Fig. 13 for
the uncontrolled case, for the transition from the uncontrolled to the controlled phase, and

FIG. 11. Time average of the vorticity contours near the cylinder, no control.
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FIG. 12. All the actuators active: Time average of the vorticity contours near the cylinder, control switched on.

during half a period of the controlled phase. The wake elongation phase and the change in
the vortex shedding are clearly visible from these plots.

Turning the attention to the GA population cluster, apart from actuators 3– 4 and 13–14,
the parameter clustering has no evident symmetry around the streamwise direction. The lack
of symmetry in the control action can be attributed to the fact that most of the actuators have
little influence on the drag reduction, since the corresponding parameters are not clustered.

FIG. 13. Snapshots of the vorticity contours near the cylinder. Top row: Uncontrolled half Strouhal period;
middle row: transition to the controlled mode; bottom row: controlled mode.
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TABLE I

Results Found by the Clustering GA

for Different Search Volume Limits

Limits Drag reduction

[−0.01, 0.01] <1%
[−0.1, 0.1] 40%
[−0.5, 0.5] 45%
[−1, 1] 50%

Hence it appears natural to suggest that the important parameters for the flow control are
only the ones corresponding to actuators containing the separation point in the uncontrolled
flow. At the same time all the other actuators could be sliding with random velocities or
remain fixed. To verify this hypothesis another validation run was performed, this time
maintaining active only actuators 3–4 and 13–14. In Fig. 14 the time-averaged vorticity
contours are shown. This plot shows that also in this case the wake elongates almost as
before.

Optimization runs were performed in search volumes with different limits for the actuator
velocities, in order to check the optimal control performances for different optimization
limits. Table I reports the optimization results for four different search volume limits.

The limit for the actuator amplitude under which it was not possible to achieve a significant
reduction with this type of actuation is 0.01. With this amplitude limit the population

FIG. 14. Only four actuators active: Time-averaged vorticity contours near the cylinder, control switched on.
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parameters showed no significant clustering. For all other limits the population clustering
was the same as that for the limits of [−1, 1].

5.1.2. Optimization of the Most Influential Actuators

To analyze the effects of the four actuators exhibiting clustering and thus being considered
of fundamental influence on the drag reduction mechanism, another optimization run was
performed using only these four actuators as free parameters. Here it should be emphasized
that no a priori knowledge of the separation points was necessary as the algorithm was able
to identify them through the parameter clustering.

In this case a population of 20 elements was used for actuators 3, 4, 13, and 14, with all
the other actuator parameters set to zero, in order to study the effect of these actuators in
detail. The thresholdJT was set to 0.86, which is the value attained for the fitness function
using only four parameters.

The population clustering in this case is shown in Fig. 15. Comparing these histograms
with those shown in Fig. 6, it is possible to see that the symmetry is lost in this case as the
values forω3 are closer to 0. In the case of the optimization with all the actuators available,
the values ofω3 are closer to 0.5, and the same is true forω4; on the other hand, for the four
parameters the optimal magnitude ofω4 is larger with respect to the other case. The other
two parameters are much better clustered than in the earlier case, indicating that using less
degrees of freedom the parameter sensitivity increases. Thez-score analysis is not necessary
in this case, since the clustering is clearer than before.

In this case some correlation was found between the parametersω4 andω14, shown in
Fig. 16. No other significant correlation was found. Contours of the near wake vorticity do
not exhibit any marked difference from those shown in Fig. 14.

FIG. 15. Optimization with only four actuators. Histogram of the population cluster.
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FIG. 16. Optimization with only four actuators. A plot of the parameters showing a significant correlation.

However, as can be noted from the comparison between the drag coefficients for the two
control configurations, reported in Fig. 17, the drag reduction in the present case is smaller
w.r.t. the reduction given by using all the 16 belt actuators.

Hence these results demonstrate that in this case a larger drag reduction is feasible by
allowing more degrees of freedom to the actuator parameters. By actuating beyond the

FIG. 17. Comparison between the drag coefficients for the two cases using the belt actuators. Continuous
line: all the actuators, dashed line: only the most influential actuators used.
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vicinity of the separation points it is possible to adjust the flow velocity before it arrives at
the separation point so that the actuators in that region do not face an abrupt change of the
environment that they are attempting to control. The absence of any correlation in the rest of
the actuators suggests that it would be difficult to identify an a priori estimate of the actuator
profile for large numbers of actuators, even for this simplified geometrical configuration.

5.2. No Penalty Terms, Mass Transpiration Actuators

The same set of experiments as before is presented here. Also in this case the separation
point of the uncontrolled flow has been identified by the GA to play a critical role in the drag
reduction mechanism, so we maintain the distinction between results obtained with all 16
actuators active and results where the active actuators are those exhibiting high population
correlation in the first case.

The results obtained with these kinds of actuators are very similar to those obtained with
belt actuators; some of these results are reported in what follows.

5.2.1. Results Using All the Actuators

In the case of blowing/suction actuation, all the GA parameters including the threshold
JT were kept equal to the case of the tangential actuation, in order to consistently compare
the optimization performance of the two types of actuators.

In this case the GA did not converge to the desired threshold, and the limit of 1000
iterations was reached without significant improvements of the worst fitness; the mutation
probability was saturated to its maximum allowed value, as is clear from Fig. 18. This is
evidence that there is a high probability that the minimum reached is a global one.

A histogram of the final population cluster is shown in Fig. 19. Also in this case most
parameters are not clustered, and the most evident clustering can be observed for the ve-
locities assigned to actuators 3–4 and 13–14, also for these kinds of actuators. This means

FIG. 18. Ideal jet actuators. Top: Worst fitness in the population as a function of the optimization process
iterations; bottom: mutation probability averaged over the population.
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FIG. 19. Population clustering, ideal jet actuators: All the parameters are active.

that these actuators are the most important also in this case; however, the solution yielded
by the GA indicates that these actuators (3–4 and 13–14) must always operate on a suction
mode, to delay separation by allowing the flow to “slide” more on the cylinder surface.

Also in this case the most important segments for control are those containing the sepa-
ration point, as indicated by the jointz scores reported in Fig. 20.

FIG. 20. Jet actuators, jointz scores for the optimized population.
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FIG. 21. Validation run, ideal jet actuators: Comparison between the drag coefficient for the case using all
the actuators (full line) and the case using only the first four most significant actuators (broken line). Control is
switched on att∗ = 5 for both cases.

Furthermore, there is no significant correlation between the parameters; this confirms
that the relevant feature of drag reduction is that the actuators containing the separation
point must perform either antisymmetric or symmetric actions, depending on the action
considered, but the actuation strengths do not have to be necessarily correlated.

The validation run performed for the best solution in the population is reported in Fig. 21,
which shows a plot of the drag coefficient during the transition from the uncontrolled to
the controlled phase. The same plot also reports the drag coefficient resulting from the
control performed using only the actuators containing the separation point, and using all the
other actuators only to satisfy the zero net mass constraint. In this case the drag reduction
obtained is not smaller when fewer actuators are used, an indication of the fact that with
ideal jet actuators the actuators containing the separation point play a central role in the
drag reduction mechanism.

The time average of the vorticity contours near the cylinder (Fig. 22) shows that the
modification in the flow behavior due to this kind of actuation is very similar to the tangential
actuation case.

5.2.2. Optimization of the Most Influential Actuators

In this case another optimization run was performed using only the four actuators con-
taining the separation point as free parameters, all the other actuators being used uniquely
to satisfy the zero net mass constraint. The GA parameters are the same as those in the
optimization with four actuators and tangential actuators, i.e., actuators 3, 4, 13, and 14,
with all the other actuator parameters set to zero. The GA parameters are fixed to the same
value as in the belt actuation optimization with four actuators.

The population clustering in this case is shown in Fig. 23. This clustering is the same as the
clustering obtained for these actuators in the optimization using 16 parameters, except that
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FIG. 22. Ideal jet actuators, only four actuators active: Time-averaged vorticity contours near the cylinder,
control switched on.

a more marked sensitivity can be noticed: this implies that when fewer actuators are used,
their parameter values become more critical. The validation run showed no improvements
with respect to the previous case. This provides us with further evidence that in this case
only the actuators containing the separation point are truly important for achieving drag
reduction. However, in the case of the tangential belt actuators the reduction is a bit larger
than what we observed here.

FIG. 23. Ideal jet actuators, optimization run with four actuators: Population clustering.
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5.3. Optimization with Penalty Terms for the Control Energy

In the previous cases it was decided to give more importance to some parameters, de-
pending on their sensitivity as signified by the parameter clustering. The assumption behind
this criterion is that a low sensitivity (as signified by a nonclustered population) of the cost
function for a parameter implies that it has the same influence on the fitness function for
every value it assumes in its basin. Therefore, if the value 0 is included in the basin of a
low-sensitivity parameter, setting it to 0 will not change the fitness function significantly.
This allowed us to reduce the number of degrees of freedom but it provides a rather arbi-
trary criterion for the parameter selection. In the following sections it will be shown how
penalizing the control energy affects the optimal basin, being of great help in the process
of selection of suitable solutions.

5.4. Control with Belt Actuators

For the case study considered, since we do not wish to prescribe in advance which
actuators will be more important than others, we setR= α · I 16, whereI 16 is the 16× 16
identity matrix, and the scalarα = 20, a value chosen in such a way that the two terms in the
functional are roughly of the same order of magnitude in the initial stages of the optimization.
For this case, the GA parameters are set to the same values as the correspondent case without
penalty term. Only the thresholdJT 15 set to 1, a larger value with respect to the other case,
to take into account the additional term due to the control energy.

The final parameter distribution for this optimization is shown in Fig. 24. All the param-
eters are well clustered, and the ones that are not as important for the drag reduction are
clustered around 0, as expected.

In Fig. 25 the most significant correlations between the parameters are plotted. Some
adjacent actuators are correlated, an indication of the presence of a quite regular velocity
pattern. Also, there are correlations between angular velocities of actuators that are near the
front of the cylinder and actuators near the rear part, on the wake side. This indicates that the
actuators that are near the front actually have an importance in the overall process. Penalizing
the control energy allowed the GA to retain only solutions in which a net, nonzero angular
speed is necessary for drag reduction, thus allowing us to uncover the optimal velocity
profile shape.

The resulting drag reduction for the best individual in the population is the same as that
in the first case, meaning that the minimum reached in this case coincides with that reached
earlier.

5.5. Control with Mass Transpiration Actuators

Also with the jet actuators the control energy was penalized to have the two terms in
the functional be of the same order of magnitude in the initial stages of the optimization.
ThereforeR= α · I 16 andα = 200 in this case. All the other GA parameters were kept
equal to those used in the optimization without penalty terms, andJT was fixed to 1.5 in this
case. The GA converged in about 300 iterations, yielding the population cluster reported in
Fig. 26.

The resulting drag reduction performances were the same as those in the case with-
out penalization; therefore they are not reported here. A remarkable difference w.r.t. the



102 MILANO AND KOUMOUTSAKOS

FIG. 24. Optimization with all the actuators, with control energy penalization. Histogram of the final popu-
lation.

FIG. 25. Optimization with all the actuators, with control energy penalization. Most significant correlations.
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FIG. 26. Jet actuators, optimization with all the actuators, with control energy penalization. Histogram of the
final population.

belt actuator optimization is that in this case a control energy penalization equivalent to that
used for the belt actuator optimization was used, but the population cluster width did not
change significantly. This implies that with jet actuators the parameter sensitivity is much
less marked, or in other words the minimum basin is much more shallow in this functional.
From a practical viewpoint, it can be inferred that implementation tolerances can be larger
in the case of jet actuators, meaning that practical implementation would be easier in this
respect for this kind of actuator.

6. TWO-DIMENSIONAL CONTROL FOR THREE-DIMENSIONAL FLOWS

The optimization parameters that were obtained for the two-dimensional simulations
are now directly employed for a three-dimensional cylinder withRe= 500. It is shown
that 2D parameters lead to drag reduction when they are suitably extended for the 3D ge-
ometry. A three-dimensional simulation setup with a mesh withNr × Nθ × Nz = 160×
320× 48 has been used; the cylinder is 5 diameters long, thus ensuring that the simu-
lated flow is three-dimensional [12]. Inz direction the tangential velocity has been fixed
to be constant and equal to the 2D actuator velocity, to simulate three-dimensional
belts.

In Fig. 27 it is possible to see a plot of isosurfaces of positive and negative spanwise
vorticity, when the belts are switched off. The separation region is evident from these plots,
and it is also possible to see that the vortices are shed from a region near the cylinder. The
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FIG. 27. Uncontrolled shedding of one vortex in the 3D case for the cylinder flow. Blue: Isosurfaceωz = 0.1;
red: isosurfaceωz = −0.1.

shedding of one vortex is shown in these plots. In Fig. 28 the transition from uncontrolled
shedding to the steady-state controlled shedding is shown; the plots show the same vorticity
isosurfaces as before, starting right after the acceleration phase of the belts. Looking at
the cylinder surface it is possible to clearly see the separation point moving nearer to the
wake region of the cylinder, as well as an elongation of the near wake region. In Fig. 29 the
shedding of a vortex in steady state is shown. It is evident that the flow stays much more
attached to the cylinder surface, in this case.

The plot of the drag coefficient, corresponding to these vorticity plots, is shown in Fig. 30.
After a transition phase, it is possible to see that the drag coefficient settles at a value that
is about 50% of the uncontrolled drag coefficient, also in this more realistic simulation.
This, however, does not mean that the solution found is the global optimum also in the
three-dimensional case: an optimization run should be performed taking into account three-
dimensional simulations to be able to draw such a conclusion. This task is the subject

FIG. 28. 3D case cylinder flow, transition from uncontrolled to controlled regime (belt actuators). Blue:
Isosurfaceωz = 0.1; red: isosurfaceωz = −0.1.
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FIG. 29. 3D case cylinder flow, controlled regime (belt actuators). Blue: Isosurfaceωz = 0.1; red: isosurface
ωz = −0.1.

of ongoing work, due to the high computational demand of accurate three-dimensional
simulations. An alternative approach using reduced-order models derived from DNS sim-
ulations, in conjunction with the proposed GA, also appears to be a promising venue.

However, it is possible to see that the results coming from much less expensive two-
dimensional simulations can be extended to three dimensions in a straightforward way,
especially when the underlying physical mechanisms are known to be two-dimensional, as
in the present case study.

FIG. 30. 3D case cylinder flow, drag coefficient (belt actuators). Transition from the uncontrolled to the
controlled regime.
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7. CONCLUSIONS

A clustering GA was implemented to study the drag reduction yielded by controlling the
velocity field on the surface of a cylinder using idealized actuators. The clustering feature
of the algorithm allowed us to examine the parameter correlations and to arrive at optimal
surface velocity configurations, yielding a drag reduction of about 50%.

The possibility of using a few strategically placed actuators to obtain a significant drag
reduction was explored using the clustering diagnostics of this method. The genetic algo-
rithm provides a systematic way of identifying the significant parameters of the problem
pertaining to critical points of the flow such as the separation points. An antisymmetric
actuation near the separation points on both sides of the cylinder has been found to be the
most important feature of this control system, in the case of belt actuators, while a steady
suction in correspondence to the same actuators has been found to have the same effect.
The first conclusion that can be drawn is that the GA provided quantitative evidence of
what physical understanding would suggest; i.e., to reduce the drag the flow should stay
attached to the body surface as long as possible. This “automatic discovery” property of the
GA suggests its utilization in cases where scarce physical understanding of the underlying
governing mechanism is available. Flow simulations and experiments at highRenumbers
could be prime targets for this approach. However, the large number of iterations used by
GAs and the high computational cost of simulations may be limiting factors. Work is under
way to circumvent this difficulty by adapting low-order models to represent the physics of
the flow and by accelerating the convergence speed of the GAs exploiting the information
that can be gained by unsuccessful trial points during the optimization route.

With regard to the various types of actuation, some conclusion can be drawn by compar-
ing the classes of solutions found for the two different kinds of idealized actuation. This
comparison reveals that for mass transpiration the related cost function has a shallower min-
imum basin. This implies that the tolerances for the mass transpiration actuation strengths
can be larger than the tolerances needed for the belt actuators, making them possibly easier
to implement.

The results obtained using two-dimensional simulations are shown to be useful for three
dimensions when the actuators are suitably extended to the third dimension of the flow.
This suggests that optimization in two dimensions followed by a validation of the results in
three dimensions is a viable approach to the rapid design of realistic control devices.
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